Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1346842, 2024.
Article in English | MEDLINE | ID: mdl-38390208

ABSTRACT

Background: Poor oocyte quality remains one of the major challenges for polycystic ovary syndrome (PCOS) patients during in vitro fertilization (IVF) treatment. Granulosa cells (GCs) in PCOS display altered functions and could cause an unfavorable microenvironment for oocyte growth and maturation. Ferroptosis is a new form of programmed cell death, but its role in PCOS has been largely unclarified. Methods: Ferroptosis-related differentially expressed genes (DEGs) of GCs in women with PCOS were identified by bioinformatic analyses of GSE155489 and GSE168404 datasets. Functional enrichment analyses were conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Core ferroptosis-related genes were further screened by random forest, and evaluated for diagnostic value by receiver operating characteristic curve analyses. Gene expression was validated by real-time quantitative polymerase chain reaction of collected GC samples, and analyzed for association with oocyte quality. In addition, gene regulatory network was constructed based on predicted RNA interactions and transcription factors, while potential therapeutic compounds were screened through molecular docking with crystallographic protein structures. Results: A total of 14 ferroptosis-related DEGs were identified. These DEGs were mainly enriched in reactive oxygen species metabolic process, mitochondrial outer membrane, antioxidant activity as well as ferroptosis and adipocytokine signaling pathways. Eight core ferroptosis-related genes (ATF3, BNIP3, DDIT4, LPIN1, NOS2, NQO1, SLC2A1 and SLC2A6) were further selected in random forest model, which showed high diagnostic performance for PCOS. Seven of them were validated in GC samples, and five were found to be significantly and positively correlated with one or more oocyte quality parameters in PCOS patients, including oocyte retrieval rate, mature oocyte rate, normal fertilization rate, and good-quality embryo rate. Gene regulatory network revealed JUN and HMGA1 as two important transcription factors, while dicoumarol and flavin adenine dinucleotide were predicted as small molecules with therapeutic potential. Conclusions: This is the first comprehensive report to study the differential expression of ferroptosis-related genes in GCs of PCOS and their clinical relevance with oocyte quality. Our findings could provide novel insights on the potential role of GC ferroptosis in PCOS pathogenesis, diagnosis, and targeted treatment.


Subject(s)
Ferroptosis , Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Ferroptosis/genetics , Molecular Docking Simulation , Granulosa Cells/metabolism , Oocytes/metabolism , Transcription Factors/metabolism , Tumor Microenvironment , Phosphatidate Phosphatase
2.
Int J Food Sci Nutr ; 74(7): 730-745, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37758199

ABSTRACT

Diet is a critical regulator for physiological metabolism and tissue homeostasis, with a close relation to health and disease. As an important organ for digestion and absorption, the intestine comes into direct contact with many dietary components. The rapid renewal of its mucosal epithelium depends on the continuous proliferation and differentiation of intestinal stem cells (ISCs). The function and metabolism of ISCs can be controlled by a variety of dietary patterns including calorie restriction, fasting, high-fat, ketogenic, and high-sugar diets, as well as different nutrients including vitamins, amino acids, dietary fibre, and probiotics. Therefore, dietary interventions targeting ISCs may make it possible to prevent and treat intestinal disorders such as colon cancer, inflammatory bowel disease, and radiation enteritis. This review summarised recent research on the role and mechanism of diet in regulating ISCs, and discussed the potential of dietary modulation for intestinal diseases.


Subject(s)
Inflammatory Bowel Diseases , Intestines , Humans , Intestines/physiology , Diet , Stem Cells/metabolism , Dietary Fiber/metabolism , Intestinal Mucosa/metabolism
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(3): 871-879, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37356954

ABSTRACT

OBJECTIVE: To explore the chronic injury and its possible mechanism of ionizing radiation on multipotent hematopoietic progenitor cells (MPPs) by determining the related indicators of MPPs in bone marrow of mice post-radiation. METHODS: Sixteen C57BL/6 adult mice were randomly divided into normal control and irradiation groups, 8 mice in each group. The mice in irradiation group were exposed to 6 Gy X-ray. The proportion of bone marrow MPPs, their apoptosis and proliferation 2 months after irradiation were detected by flow cytometry. Mitochondrial activity and levels of reactive oxygen species (ROS) in each MPPs population were detected by Mitotracker Red and DCFDA probes, and the senescent state of MPPs in the bone marrow was analyzed. RESULTS: Ionizing radiation could reduce the proportion of MPPs in mouse bone marrow. The proportions and numbers of MPP1, MPP3 and MPP4 in the bone marrow were significantly decreased after whole-body irradiation with 6 Gy X-ray (P<0.05). In addition, radiation significantly reduced the colony-forming capacity of MPPs in bone marrow (P<0.05), the proportions of apoptotic cells in the MPP1 and MPP4 cell populations increased significantly in the bone marrow (P<0.05). The activity of mitochondria was significantly reduced in the bone marrow MPP2, MPP3 and MPP4 cell populations compared with that of the control group (P<0.05). It was also found that the radiation could significantly increase the ROS levels of MPPs in bone marrow, and the content of ROS in the MPP2, MPP3 and MPP4 cell population of the bone marrow was significantly increased(P<0.05). The senescent cells ratios of MPP1, MPP3 and MPP4 cells in the bone marrow after irradiation were significantly higher than those in the control group (P<0.05). CONCLUSION: Ionizing radiation can cause chronic MPPs damage in mice, which is closely associated with persistent oxidative stress, cells apoptosis, and cellular senescence.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Mice , Animals , Reactive Oxygen Species , Mice, Inbred C57BL , Whole-Body Irradiation , Radiation, Ionizing , Bone Marrow Cells
4.
Front Endocrinol (Lausanne) ; 14: 1114424, 2023.
Article in English | MEDLINE | ID: mdl-37229456

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia and insulin resistance. The incidence of T2DM is increasing globally, and a growing body of evidence suggests that gut microbiota dysbiosis may contribute to the development of this disease. Gut microbiota-derived metabolites, including bile acids, lipopolysaccharide, trimethylamine-N-oxide, tryptophan and indole derivatives, and short-chain fatty acids, have been shown to be involved in the pathogenesis of T2DM, playing a key role in the host-microbe crosstalk. This review aims to summarize the molecular links between gut microbiota-derived metabolites and the pathogenesis of T2DM. Additionally, we review the potential therapy and treatments for T2DM using probiotics, prebiotics, fecal microbiota transplantation and other methods to modulate gut microbiota and its metabolites. Clinical trials investigating the role of gut microbiota and its metabolites have been critically discussed. This review highlights that targeting the gut microbiota and its metabolites could be a potential therapeutic strategy for the prevention and treatment of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Probiotics , Humans , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/metabolism , Prebiotics , Probiotics/therapeutic use , Fecal Microbiota Transplantation
5.
Biol Res ; 55(1): 26, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35962402

ABSTRACT

BACKGROUND: Unsubstantiated concerns have been raised on the potential correlation between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and infertility, leading to vaccine hesitancy in reproductive-aged population. Herein, we aim to evaluate the impact of inactivated SARS-CoV-2 vaccination on embryo ploidy, which is a critical indicator for embryo quality and pregnancy chance. METHODS: This was a retrospective cohort study of 133 patients who underwent preimplantation genetic testing for aneuploidy (PGT-A) cycles with next-generation sequencing technology from June 1st 2021 to March 17th 2022 at a tertiary-care medical center in China. Women fully vaccinated with two doses of Sinopharm or Sinovac inactivated vaccines (n = 66) were compared with unvaccinated women (n = 67). The primary outcome was the euploidy rate per cycle. Multivariate linear and logistic regression analyses were performed to adjust for potential confounders. RESULTS: The euploidy rate was similar between vaccinated and unvaccinated groups (23.2 ± 24.6% vs. 22.6 ± 25.9%, P = 0.768), with an adjusted ß of 0.01 (95% confidence interval [CI]: -0.08-0.10). After frozen-thawed single euploid blastocyst transfer, the two groups were also comparable in clinical pregnancy rate (75.0% vs. 60.0%, P = 0.289), with an adjusted odds ratio of 6.21 (95% CI: 0.76-50.88). No significant associations were observed between vaccination and cycle characteristics or other laboratory and pregnancy outcomes. CONCLUSIONS: Inactivated SARS-CoV-2 vaccination had no detrimental impact on embryo ploidy during in vitro fertilization treatment. Our finding provides further reassurance for vaccinated women who are planning to conceive. Future prospective cohort studies with larger datasets and longer follow-up are needed to confirm the conclusion.


Subject(s)
COVID-19 , Preimplantation Diagnosis , Adult , Aneuploidy , Blastocyst , COVID-19/prevention & control , COVID-19 Vaccines , Female , Fertilization in Vitro , Genetic Testing , Humans , Ploidies , Pregnancy , Pregnancy Rate , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Vaccination
6.
Front Cell Dev Biol ; 10: 783884, 2022.
Article in English | MEDLINE | ID: mdl-35547814

ABSTRACT

Male infertility is an important problem in human and animal reproduction. The testis is the core of male reproduction, which is very sensitive to radiation. The decline of male reproductive ability is a common trend in the world. Radiation is a physical factor leading to abnormal male reproductive function. To investigate the potential mechanisms of testicular damage induced by radiation and explore effective strategies to alleviate radiation-induced testis injury, C57BL/6 mice were irradiated with 8.0 Gy of X-ray irradiation. Testis and epididymis were collected at days 1, 3, and 7 after radiation exposure to analyze spermatogonia and sperm function. The results showed that radiation significantly destroyed testicular structure and reduced the numbers of spermatogonia. These were associated with mTORC1 signaling activation, decreased cellular proliferation and increased apoptotic cells in the irradiated testis. Rapamycin significantly blocked mTORC1 signaling pathway in the irradiated testis. Inhibition of mTORC1 signaling pathway by rapamycin treatment after radiation could significantly improve cell proliferation in testis and alleviate radiation-induced testicular injury after radiation exposure. Rapamycin treatment benefited cell survival in testis to maintain spermatogenesis cycle at 35 days after irradiation. These findings imply that rapamycin treatment can accelerate testis recovery under radiation condition through inhibiting mTORC1 signaling pathway.

7.
Front Cell Dev Biol ; 10: 820520, 2022.
Article in English | MEDLINE | ID: mdl-35372342

ABSTRACT

Pseudotrophic muscular dystrophy is a common clinical skeletal muscle necrotic disease, among which Duchenne muscular dystrophy (DMD) is the predominant. For such diseases, there is no clinically effective treatment, which is only symptomatic or palliative treatment. Oxidative stress and chronic inflammation are common pathological features of DMD. In recent years, it has been found that the pathophysiological changes of skeletal muscle in DMD mice are related to muscle stem cell failure. In the present study, we established a DMD mice model and provided tocotrienol (γ-tocotrienol, GT3), an antioxidant compound, to explore the relationship between the physiological state of muscle stem cells and oxidative stress. The results showed that the application of GT3 can reduce ROS production and cellular proliferation in the muscle stem cells of DMD mice, which is beneficial to promote the recovery of muscle stem cell function in DMD mice. GT3 treatment improved the differentiation ability of muscle stem cells in DMD mice with increasing numbers of MyoD+ cells. GT3 application significantly decreased percentages of CD45+ cells and PDGFRα+ fibro-adipogenic progenitors in the tibialis anterior of DMD mice, indicating that the increased inflammation and fibro-adipogenic progenitors were attenuated in GT3-treated DMD mice. These data suggest that increased ROS production causes dysfunctional muscle stem cell in DMD mice, which might provide a new avenue to treat DMD patients in the clinic.

8.
Biol. Res ; 55: 26-26, 2022. tab
Article in English | LILACS | ID: biblio-1447502

ABSTRACT

BACKGROUND: Unsubstantiated concerns have been raised on the potential correlation between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and infertility, leading to vaccine hesitancy in reproductive-aged population. Herein, we aim to evaluate the impact of inactivated SARS-CoV-2 vaccination on embryo ploidy, which is a critical indicator for embryo quality and pregnancy chance. METHODS: This was a retrospective cohort study of 133 patients who underwent preimplantation genetic testing for aneuploidy (PGT-A) cycles with next-generation sequencing technology from June 1st 2021 to March 17th 2022 at a tertiary-care medical center in China. Women fully vaccinated with two doses of Sinopharm or Sinovac inactivated vaccines (n = 66) were compared with unvaccinated women (n = 67). The primary outcome was the euploidy rate per cycle. Multivariate linear and logistic regression analyses were performed to adjust for potential confounders. RESULTS: The euploidy rate was similar between vaccinated and unvaccinated groups (23.2 ± 24.6% vs. 22.6 ± 25.9%, P = 0.768), with an adjusted ß of 0.01 (95% confidence interval [CI]: -0.08-0.10). After frozen-thawed single euploid blastocyst transfer, the two groups were also comparable in clinical pregnancy rate (75.0% vs. 60.0%, P = 0.289), with an adjusted odds ratio of 6.21 (95% CI: 0.76-50.88). No significant associations were observed between vaccination and cycle characteristics or other laboratory and pregnancy outcomes. CONCLUSIONS: Inactivated SARS-CoV-2 vaccination had no detrimental impact on embryo ploidy during in vitro fertilization treatment. Our finding provides further reassurance for vaccinated women who are planning to conceive. Future prospective cohort studies with larger datasets and longer follow-up are needed to confirm the conclusion.


Subject(s)
Humans , Female , Pregnancy , Adult , Preimplantation Diagnosis , COVID-19/prevention & control , Ploidies , Blastocyst , Fertilization in Vitro , Genetic Testing , Prospective Studies , Retrospective Studies , Vaccination , Pregnancy Rate , COVID-19 Vaccines , SARS-CoV-2 , Aneuploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...